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Abstract

Nowadays, social contacts are vital to find relevant content. We need to connect with people with 
similar interests because they provide content that matters. Every day is more clear that in the 
future of document recommendations will be necessary to cross the traditional data with the data 
obtained from social networks. For instance, in order to provide the best content available we can  
use sentiment analysis techniques to prioritize content with good reviews. The aim of this project 
is to offer a better sentiment recognition strategy.

In this master thesis we have worked analyzing short messages about brands in Twitter trying to 
classify them between positive and negative using Sentiwordnet. After several experiments, we 
have  seen  that  applying  a  semi-supervised  approach  we  could  increase  the  quality  of  the 
dictionary and adapt it to a specific domain. In the second part of the project we wanted to get 
one step further by analyzing relevant content inside those tweets to know also the reason why 
something is positive or negative. Due to the lack of strong grammatical structures inside tweets 
we had to go for an approach based on structured N-grams. For that, we have modelized a new 
idea called sentigram that consists in the aggregation of several N-grams.  This approach allows 
to create  models very precise to specific  domains and at  the same time capture the relation 
between aspects and sentiment words.

Keywords: sentiment analysis, natural language processing, opinion mining, twitter, n-grams, 
sentigrams, aspect identification, social networks, machine learning.
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1. Motivation

Sentiment Analysis is a technology that will be very important in the next years. With opinion 
mining we can distinguish poor content from high quality content. And also, we have a tool able 
to calculate a social rank for any brand that offers online content. With the technologies available 
we can know if a brand has more good opinions than bad opinions and find the reasons why 
those opinions are positive or negative. This can allow brands to understand better its clients and 
anticipate change. On the other side it allows clients to do more informed decisions and stay alert 
about bad practices. The research field for this project will be natural language processing and 
specifically  we  will  explore  sentiment  analysis  technologies  in  order  to  extract  useful 
information about brands, politics or products. 

1.1 An opportunity to perform changes

What we can do to perform better decisions? How can we recover some decision power in our 
daily routine? It is very common to think that big changes must be done by leaders that are there 
to decide for us. But this shouldn’t be true. Every time that we are in a conversation, every time 
we read a book or even every time we buy a product we make little decisions that can positively 
influence in our community. Becoming a world-changing person is a hard task. It is not possible 
to change the world without information. If we want to solve a problem we need to point out to 
the people who caused this problem. We have to define some good practices and make sure that 
most of us follow those rules. For that, is necessary information and we need the ability to share 
this information quickly and do it with enough openness to detect those informations that might 
look manipulated or not contrasted.

1.2 The information era is here

The rise of social networks has given us this opportunity of having an alternative media where 
we can connect directly with close people (in a topic or in a group of friends) to transmit useful 
information. Search engines are also an important part of this change. Through a search engine 
we can answer questions that some years ago took days or weeks to solve. We can easily access 
to knowledge and discuss about this knowledge which makes us more able to question thoughts 
and take informed decisions.

A change  is  happening  right  now.  By  having  free  access  to  information  the  quantity  of 
knowledge that we can process in one day it has nothing to do with the quantity that we used to 
process  before  internet  was  here.  Furthermore,  we  do  not  need  to  memorize  pointless 
information anymore. Since we have gadgets able to answer questions in seconds we do not need 
to put effort in memorizing rules or ideas. We can focus on understanding concepts. The maxim 
that a good researcher is that one that asks the right questions is more true than ever.

1.3 Hidden data inside opinions
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Sentiment analysis is a discipline that can be defined as a set of structured properties that we 
want to find inside a text. When we read an opinion we want to know what is talking about  
(object), and what are the characteristics of this object (features). For each one of this features we 
want to know the opinion direction (positive, negative).  And finally,  we want to add all this 
opinions directions in a summary. What we can do with this summary? This summary can be 
presented to the user to inform him about a topic of his interest.

One of the missing areas in sentiment analysis is how do we isolate opinions from big media 
from small consumer’s opinions. This consumer that sells a phone because the battery life does 
not  fit  its  expectations,  this  consumer that does not  want  to involve  in a company anymore 
because he is disappointed, or this citizen that expresses opinions outside of the mainstream. 
Every time we buy, we vote, we search all those expectations that we have about the world will  
be taken into account to show you enough data to take the best decision. Reading opinions before  
buying something has become an habit, but there is not still an application able to centralize this 
opinions effectively like Google does with information. Will it be the next Google a sentiment 
search engine? We don’t know yet. What is sure is that people need more elements to understand 
better the world and sentiment analysis is one of them.

1.4 Structure of this thesis

This master thesis work is structured in 5 chapters. Motivation (1), Introduction to sentiment 
analysis (2), State of The Art (3), Our Proposal (4), Experiments (5).

In chapters 2 and 3 we will  present the field of sentiment analysis  and we will  explore the 
different state-of-the-art solutions that have been written before. We will explain what are the 
main development areas on sentiment analysis. Also, we will point out the main papers in the 
area specially those studies that had based its analysis on tweets.

Inchapters 4 and 5 we will present our findings and our experiments and we will explain in detail 
how our prototype works and what differences it has with other state-of-the-art solutions.

1.5 Research goals

The main goal of this work is to build a software prototype able to rank social opinions from 
Twitter. We have chosen Twitter because it is a public social network where users can complain 
easily about the things they don't like. If we are able to give a social rank to each twitter account 
for any possible topic we will be able to provide to the users a list with the best brands, products 
and services to choose. This information will be crucial if we want to provide quality content to 
users.  Sentiment  analysis  can  predict  which  brands  are  reliable  and  which  don’t.  And  in 
consequence which content has more general acceptation.

Our prototype should be able to adapt to several domains with minimum effort and deal with the 
lack of strong grammatical rules of short  messages on Twitter.  Also we should get accuracy 
results very competitive or better than state-of-the-art and design a set of experiments that prove 
that our system works perfectly with a public dataset.
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2. Introduction to sentiment analysis

In (Liu, 2010) we have a very good definition of sentiment analysis. He proposes a model where 
unstructured texts are defined as structured data. The structure proposed is a quintuple (o j, fjk, 
ooijkl, hi, tj). So we have an object oj with a set of features fjk. This structure contains opinion 
orientations ooijkl that can be referred to the root object or to specific features and at the same 
time,  those opinions can have  a  specific  orientation (positive,  negative,  anger,  joy,  etc.)  and 
strongness. If we want to complete this structure we can also add non-subjective opinions as 
facts (neutral opinion orientations). So the structure will have a collection of facts and opinions 
referred to an object and its features. Also we can consider the opinion holder hi: the person or 
organization that claims this opinion at a specific time t j. If we want to draw an example we can 
consider a review of a mobile phone where the object can be an IPhone and the features will be 
screen, battery and price. The different opinions could be “The resolution screen is awesome”, 
“The battery life is not what I the expected”, “For me is too expensive”. And facts could be: 
“Retina screen”, “Battery life: 10 hours”, “The price is 600 euros”. Furthermore, the set opinions 
and facts can have references to other objects. An opinion like “IPhone is better than Samsung 
Galaxy” can be categorized as a comparative opinion (instead of direct opinion).

But going from unstructured to a structured approach is complex. The most basic method to 
detect sentiment polarities inside texts is using the bag of words method. This method consists in 
having a dictionary with the polarity of each word and use it to decide. But how do we deal with  
ambiguity here? Sometimes a the same word can have different meanings depending on the 
context. This means that even when you have a dictionary entry for a word you will have to 
choose the exact meaning of this word. And what we can do if the author of the text is being  
satiric or ironic? Maybe he is using words out of context to refer to a specific word.

Most  of the work done on the area of sentiment  classification is  based on machine learning 
techniques. (Pang et al., 2002) did a comparison of machine learning techniques applied to topic 
classification  vs.  sentiment  classification.  They  used  movie  reviews  for  that  which  is  very 
convenient because each review contains a punctuation from 1 to 5 (using stars). They tried to 
apply  methods  useful  for  topic-classification  such  as  Naive  Bayes,  Maximum  Entropy 
classification  and  Support  Vector  Machines  using  features  like  unigrams,  bigrams  so  each 
document was represented as a word vector.  The main conclusion of the study was that the 
differences  between  Naive  Bayes  and  other  methods  is  not  significant.  Also  they  saw  that 
accuracy was lower than in topic classification (rarely higher than 80%) which implies that to  
improve accuracy ratios is necessary to choose other kind of features not considered for topic 
classification. In topic classification the presence of several words indicate that the topic is A or 
B. But an opinion is harder to classify since sometimes is an aggregation of several opinions with  
different degrees of strongness and polarities. We have to consider the contrast between them to 
decide if an opinion is A or B.

So we can consider that the art of sentiment analysis is the art of feature selection. Researchers 
have  been trying out  lots  of  possibilities  here:  N-grams,  POS-Tagging,  Syntax  features,  and 
others.  The  most  used  technique  is  N-grams  which  consists  in  creating  a  feature  with  the 
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presence of certain words or concatenations of words.  Also,  Part  of Speech Tagging is  very 
useful since some verb tenses, adjectives and adverbs are indicators of subjectivity. The syntax 
analysis  of  a  text  can  be  also  used  to  reinforce  properties  of  words  (negation,  contrast, 
reinforcement). Playing with context can give you advantage, it is very usual to build domain-
dependent models to detect polarity only in a specific domain although some researches have 
built cross-domain solutions.

2.1 Feature selection for sentiment analysis

This is the most important step when you are designing a sentiment analysis system. If you do 
not choose carefully your features you might end up with a noisy classifier or with low rates of 
accuracy. The most effective techniques are N-Grams, POS-tagging features and syntax features. 
Although in practice is  better to combine several  features to increase accuracies as much as 
possible.

2.1.1 N-grams + Negations

N-grams consists  in  using  combinations  of  words  as  features.  For  instance  the  combination 
“beautiful” might be a unigram for positive opinions, “I like” would be a bigram for positive 
opinions, and “I don't like” could be considered a trigram that hides a negative opinion. There are  
several techniques to optimize N-grams. For instance, you can avoid several N-grams that are 
very common and they do not provide classification information

You  can  gain  some  precision  on  N-grams  attaching  negative  words  inside  (not+like, 
doesn’t+work,  etc.),  also choosing the right  dimension is  also important:  in general  bigrams 
provide a good balance between a coverage (unigrams) and an ability to capture the sentiment 
expression patterns (trigrams) as have been proved in (Pak and Paroubek, 2010).

2.1.2 Pos-Tagging

Tagging the grammatical features of each word is also a very good strategy to improve accuracy 
ratios  and detect  useful  patterns  for  classifications.  For  example,  authors of  subjective  texts 
usually describe themselves in first person while verbs in objective texts are usually in the third 
person. Subjective texts tend to use simple past tense instead of the past participle. As opposite to 
the positive set,  the negative set  contains  more  often verbs in  the past  tense,  because  many 
authors express their negative sentiments about their loss or disappointment. (Pak and Paroubek, 
2010) did an extensive study to use twitter as a corpus for sentiment classifiers. They have used 
the strategy of selecting tweets with different emoticons: Happy emoticons: “:-)”, “:)”, “=)”, “:D”  
etc. and sad emoticons: “:-(”, “:(”, “=(”, “;(” etc. They tested TreeTager on this data to tag all 
words in each tweet and try to find grammatical patterns. The classifier presented was based on 
the multinomial Naïve Bayes classifier that uses N-gram and POS-tags as features.

2.1.3 Syntax

Syntax is another feature that can be useful in some cases. For instance, in the sentence “My flat  
is warm and cosy” we can say that the second adjective must be positive because first adjective 
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is  positive.  This is  indicated by the conjunction “and”.  The identification of this  connectors 
inside  a  text  can  be  used  as  valence  shifters  such  as  negation,  intensifiers,  and  diminutive 
(Kennedy and Inkpen, 2006).

2.1.4 Term frequency

Considering the number of times that a word appears in positive or negative contexts can be a 
factor to realize sentiment categorizations. Term frequency analysis can also be used to detect the 
domain of a text, so certain frequencies on a text can be used to choose a model or not. An 
example of a model based on term frequencies is (Bakliwal et al., 2012). The model defines the 
probability of being positive or negative by following this formula:

Figure 2.1. Term frequency model.

This kind of models require an important training set to work correctly, but they tend to be very 
effective (around 87% of accuracy).

2.1.5 Noun identification and other wildcards

Detecting parts of speech that do not provide any subjectivity is a good path to increase accuracy.  
Usually nouns are an example of those words without specific sentiment weight. Opinum (Bonev 
et  al.,  2012)  is  an  example  of  this  kind  of  solution.  They  used  named  entity  recognition 
algorithms in order to erase certain specific names from the training set. For instance, converting 
“Bank BBVA is very bad.” in “Bank BANK_NAME is very bad”. With this technique they can 
isolate domain-independent negative words from domain-dependent negative words and develop 
cross-domain models.

2.1.6 Punctuation signs + stopwords removal

This is a process that can give you a little boost in classifications. It  is very usual to detect  
sentiments encoded in emoticons or punctuation signs like exclamations marks. Also, stopwords 
do not provide any real  value.  Stopwords are  words used very often that we use to connect 
concepts  and to  be familiar  with a  language.  But  this  high frequency inherent  in  stopwords 
means that is better not use them in classifications. The process of stopword removal usually can 
increment accuracy by 1 or 2 points as we have seen in (Bakliwal et al., 2012).

In the case of emoticons or specific punctuation signs that are encoding sentiments is good to 
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include this values in a trainer to gain more accuracy. Also, punctuation signs more basic like 
commas or points that are indicating separation can help to separate several opinions and do not 
mix them.

2.1.7 Authority and trust

In some web sites certain opinions are more important than others. For instance, in eBay we trust 
more on those users that have already sold something. In reviews this is very similar, some lead 
writers are more influential than others and if they write a good opinion about a product this 
product should have an extra boosting.  In (Ando and Ishizaki,  2012) we have an interesting 
paper about this fact on how we consider more useful some opinions than others. They created a 
dataset with 500 sentences including exclamation marks (!) and they asked to participants to 
select those sentences that might be more influential. With this analysis they detected the most 
important features in a hotel. So those opinions that discuss about “room”,  “service”, “meal” and 
“scenery” are more influential than others.

2.1.8 Twitter-specific features

When  the  use-case  is  restricted  to  twitter  things  like  retweets,  hashtags,  mentions  can  be 
indicators of sentiments. It  is very usual that a twitter reply (mention) is done to criticize or 
refute  an  opinion  so  the  apparition  of  ‘@’ will  give  to  the  tweet  more  probability  of  be 
subjective. Also the apparition of links gives a different dimension to the text inside a tweet. 
Sometimes a user can include a link to an image or a link to a text to complement the content on 
its opinion. Without analyzing this content sometimes is better to discard those messages from 
the dataset. 

2.2 Classification techniques

In  this  chapter  we will  review briefly  the  main  classification  techniques  used  on  sentiment 
analysis systems.

2.2.1 Naive Bayes

A Naive Bayes (Das and Chen, 2007), (Pang et al., 2002), (Bonev et al., 2012) classifier assumes 
that the presence or absence of a particular feature is unrelated to the presence or absence of any 
other feature, given the class variable. For instance, a fruit may be considered to be an apple if it  
is red, round, and about 3" in diameter. A naive Bayes classifier considers each of these features 
to contribute independently to the probability that this fruit is an apple, regardless of the presence 
or absence of the other features.

So for a document that is already assigned to a class c, we now that:

Figure 2.2. Naive Bayes formula (1)
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This implies that we can rewrite P(c | d) as the probability of each feature to be in the class c 
because we assume that all features are independent.

Figure 2.3. Naive Bayes formula (2)

2.2.2 Pointwise Mutual Information

Pointwise Mutual Information (PMI) (Read, 2004), (Su et al., 2006) is a method for semantic 
orientation analysis which does not require a large body of training text. The PMI is based in the 
closeness of a phrase to a set of paradigm words that will define the different sentiments that we 
want to capture i.e. table R:

Table 2.4- Examples of postive and negative words

The statistical dependency between the phrase and each pole of semantic orientation is estimated 
using the World Wide Web (using a search engine, for instance). The search engine is consulted 
to determine the number of co-occurrences with the paradigm word sets and these hits are used 
in the following formula:

Figure 2.5. PMI formula

Finally, we can have the probability of certain words in a phrase of being positive or negative 
depending on their co-occurrences in the WWW.

2.2.3 Vector Distance

A vector distance classifier (Das and Chen, 2007) uses a group of pretrained vectors in order to 
decide the category of a new message. The grammar rules that identify each category are known 
as Gj.

Figure 2.6. Vector distance formula
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2.2.4 Support Vector Machines

The approach in SVM (Bakliwal et al., 2012), (Kim et al., 2006), (Pang et al., 2002) is totally 
different. In this case we want to find an hyperplane able to separate correctly all the documents 
assigned to a class c. Furthermore, the algorithm finds an hyperplane with a margin as higher as 
possible separated from other classes and the class c. We talk about hyperplane and not plane 
because  is  generalized  to  N  dimensions.  One  dimension  for  each  feature  that  we  want  to 
consider.

Figure 2.7. Lagrangian Dual formula

To solve the hyperplane we need to compute derivations from Lagrangian Dual to find the alpha 
for each dimension. Those alpha are known as support vectors that can be used to calculate the  
hyperplane in the formula:

Figure 2.8. Formula to calculate weights in SVM

2.2.5 Maximum Entropy

Maximum Entropy (Pang et  al.,  2002) does not make any assumption about the relationship 
between features. So this algorithm can work with features that are conditionally dependent or 
independent. This is why sometimes Maximum Entropy can perform better than Naive Bayes.

Figure 2.9. Maximum Entropy formula.

Looking at figure 2.9, we can see how P(c | d) is defined as a exponential where each feature is  
associated to the pair Fi,c(d,c') that can be 0 in some cases. Which means that a feature is only 
considered for a pair (d,c') if and only if exists another document with this feature associated to 
c'.  For instance  the feature  trigram “does not  work” would  be  only considered  for  negative 
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documents because is never included in positive documents.

2.2.6 Voting among several classifiers

Another good approach is designing a sentiment analysis system that uses the combination of 
several  classifiers.  Sometimes  the  lack  of  quality  of  a  classifier  in  some  cases  can  be 
compensated by another. (Das and Chen, 2007) designed a classifier to extract sentiment from 
stock message boards. This classifier uses a combination of several techniques and uses a voting 
scheme to decide if a word is bullish (optimistic), bearish (pessimistic), and neutral (comprising 
either spam or messages that are neither bullish nor bearish). Final classification is based on 
simple majority vote amongst the five classifiers i.e. three of five classifiers should agree on the 
message type. If a majority is not obtained, the message is not classified. This approach reduces 
the number of messages classified, but improves accuracy.

Figure 2.10. Das and Chen solution with several classifiers

2.3 Applications

Sentiment analysis is a discipline that  can be used for many applications. The first  group is 
review related websites for instance a review-oriented search engine that collects opinions from 
different sources. Another big group is recommendation systems, using sentiment analysis in this 
kind  of  applications  we  can  outperform older  systems  by  suggesting  documents  with  good 
opinions instead of bad opinions. Also, business intelligence is one of the best candidates for this 
technology, there has been lots of interests in companies to track activity and detect low sales. By 
using this algorithms you can aggregate information on comments and detect patterns to have 
relevant information about a specific product with low sales. It has been very used in electoral 
campaigns and politics to measure the pulse of electors. By analyzing tweets you can have an 
idea on what is the general status of your party or what your voters think about an specific issue.  
This technology have been already used to predict elections with very accurate results.
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3. State of the art

In the following sections 3.X we will review different fields of research considered as the state of  
the art of sentiment analysis. In Chapter 3.1 we will review dictionary techniques. After this we 
will talk about subjectivity summarization (chapter 3.2), twitter prediction (chapter 3.3), cross-
domain models (chapter 3.4), and edge cases like irony or informal texts (chapter 3.5).

Finally we will discuss about the stengths of each field of research (chapter 3.6) and we will 
review the research topics that are not developed yet and considered as research opportunities 
(chapter 3.7).

3.1 Use of sentiment dictionaries

General  Inquirer,  NTU  Sentiment  Dictionary,  Opinion’s  Finder  Subjectivity  Lexicon  or 
SentiWordnet are examples of dictionaries with information about sentiments. This dictionaries 
can be used as a starting point to build a model to detect positive or negative opinions inside a 
text. By using dictionaries we can design “bag of words” methods and decide if a opinion is  
positive or negative depending on the information that we find on dictionaries for each word in a 
text.

Sentiwordnet (Baccianella et al., 2010) is an evolution from WordNet that provides a negative 
and a positive score for each synset. The dictionary is created through the use of some synset 
seeds known as pragmatically positive and pragmatically negative and the use synonyms and 
antonyms to pass on those scores to other synsets. This propagation is limited by a radius k. After  
this initial step is finished the random-walk technique is applied. So the glosses (definitions used 
to disambiguate a synset) inside each synset are used to train a classifier.

Figure 3.1. Sentiwordnet examples.

The  random-walk  step  consists  of  viewing  WordNet  as  a  graph,  and  running  an  iterative, 
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“random-walk” process in which the positive and negative scores, starting from those determined  
in the previous step, possibly change at each iteration. The random-walk step terminates when 
the iterative process has converged.

(Godbole et al., 2007) based its classification in a lexicon obtained from WordNet. For more 
effectivity they designed different lexicons for each topic. So a lexicon for politics is totally 
different that a lexicon for health. From an initial lexicon they designed a graph model to expand 
polarities to other words. For instance, if the word “good” is marked as positive, all synonyms of  
“good” are marked as positive and all antonyms of “good” are marked as negative. Then a new 
iteration is performed for next level (with the synonyms of the synonyms and the antonyms of 
the antonyms) and so on. Depending on the distance the polarity score is different. Applying the 
formula 1/cd where c > 1 and d is the number of nodes away. With this kind of formulation the 
system ends up with polarities defined for all the words. Once we have a score for each word, we 
can calculate polarity scores of each text by dividing the sum of all polarity scores in a text 
between  number  of  total  words.  The  score  was  tested  against  names  of  celebrities:  Maria 
Sharapova got the best score.

(Esuli and Sebastiani, 2007) presented a very interesting approach applying pageRank algorithm 
to determine term polarities. For that they used extended WordNet to build a graph where each 
synset has certain polarity depending on the polarity of its members. The main hypothesis is that 
there won’t be huge variations and each synset will have a similar degree of positivity and a 
similar degree of negativity. That, will produce a graph of relations between different synsets that 
will transfer its polarity properties to its neighbors. One interesting point of this experiment is 
that they computed the pageRank separately for positive synsets and negative synsets (starting all  
the graph from scratch for each case). Also they have seen that effectiveness is much better with 
positive terms, so classifying negative terms is a harder task. As a conclusion, they see that this  
kind of model can be applied to other use cases related with semantic properties of words.

(Thelwall et al., 2010) developed SentiStrength algorithm using comments from MySpace. The 
main complexity of this comments is the informality of text. Expressions and abbreviations used 
in SMS are very used on this social network. They classified a set of comments assigning a score 
from 1 to 5. Each comment could have a strengthness in the positive and negative axis at same 
time.  In  order  to  get  consistent  scores  to  each  comment  they  annotated  the  dataset  among 
different  participants  to  find  participants  that  gave  consistent  punctuations  to  all  comments. 
Participants who gave abnormal punctuations were rejected.

The algorithm starts with an initial list of positive and negative words (assigned to a specific 
negative and positive punctuation from 1 to 5). By using this word scores we can assign a score 
to each comment. Ideally this comment score has to match with the punctuations given manually. 
The algorithm does iterations until convergence between calculated scores and manual scores is 
reached. So if the word “love” has initially 4 points and assigning 3 points the overall accuracy is 
better,  score  changes  for  this  word.  The  algorithm  not  only  includes  words,  also  includes 
emoticons and punctuation signs such as “!”. This incremental model was compared against n-
gram models and outperformed all of them.

3.2 Subjectivity Summarization
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Another hot topic on this area is subjectivity summarization. This consists in summarizing only 
one type of opinions from a text or a set of texts. This approach is more interesting than detecting  
the polarity of a given text or phrase because users at the end might prefer a program able to give 
a  general  opinion  about  a  brand  than  not  a  program able  to  do  individual  categorizations. 
Summarizing thousands or millions of texts in seconds is something that humans can't do. In the 
field of subjectivity summarization we can differentiate two types of summaries. The first one is 
a document-summary, where we provide a sentiment summary for a single document. This can 
be obtained by using graph representations of content and trying to find the most representative 
nodes and edges. The second type is multi-document summary where we provide a summary 
from aggregating multiple documents. The first step for this kind of summarization is detecting 
similar or identical opinions across the documents in order to show the most common ones. In 
this summaries you might also want to include when several users agree in a topic and record the 
different reasons for that. For instance, two users can agree that a movie is good but one could be 
because  its  special  effects  and  another  one  because  its  plot.  In  contrast  with  traditional 
summarization where redundancy is erased, in multi-document summarization we use redundant 
opinions to build a general opinion.

One of the early papers in document subjectivity summarization was done by (Pang and Lee, 
2004). They developed a graph algorithm based on minimum cuts to capture subjectivity inside a 
text. The basic idea behind minimum cuts is create groups behind each sentence inside a text.  
After  having  each  sentence  assigned  to  all  classes  with  certain  probability  (for  instance 
C1=positive  and  C2=negative),  the  algorithm  creates  relationships  between  the  different 
sentences in pairs and calculates its group probability to be in a class.

Figure 3.2. Graph-cut-based creation of subjective extracts

At  the  end the  algorithm keeps all  nodes  that  are  likely  to  be in  the  same class  and those 
sentences with higher probability to be in a class considering them together. To do that, you erase 
the weakest relationships (less likely to be in a class). With this system you can aggregate all the 
specific  sentiments  associated  to  one  class  inside  a  text  and  keep only  the  most  important 
sentences.
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But  there  are  other  techniques  to  present  a  sentiment  summary  to  the  user  without  textual 
representations. Thermometer graphics are represented by topic boxes with a determined size for 
each topic depending on the number of times that is mentioned. And one color assigned to each 
topic depending on its degree of positiveness. So the user can have a general idea of the topics 
discussed and the sentiment  without  reading text.  You can also represent  the  information  in 
histograms  in  the  5  stars  review  systems,  in  a  way  that  you  can  analyze  the  different 
characteristics taken into account when the review is 1 star, 2 stars, 3 stars, etc... and also see 
clearly  which  star  is  more  common.  Rose plot  is  another  technique  to  represent  similarities 
between products. If for instance two products have long battery life they should be considered 
similar. In this kind of plot you have a circle where each end represents one characteristic (that 
can be represented in red or green depending of its positiveness) so you can see two different 
products  and  read  two  rose  plots  to  have  a  quick  idea  which  is  better  characteristic  by 
characteristic. Time is another variable that can be included in this kind of graphics to analyze 
the sentiment evolution of a topic over time.

Another factor to consider when doing summarizations is reviewer quality. Some opinions could 
be  more  meaningful  than others.  For  instance,  in  Amazon the  user  can mark an opinion as 
“helpful” or “not useful”. By considering this flag we can detect opinion leaders and build our 
summary on top rated opinions. But even with those flags as input, we can still consider opinions 
that are not really useful or consider too much leader opinions (what in literature is called the 
richer-get-richer effect). This can be fixed by creating a usefulness classifier to analyze things 
like writing quality,  term popularity or subjectiveness of the review. Other issue in reviewer 
quality is spam. In some sites like Amazon Mechanical Turk people is paid to write positive 
opinions. How do we process those opinions to not alter real opinions? Usually those spammers 
are using the same writing style in all opinions so we can detect patterns and erase them.

3.3 Using Twitter to make predictions of events

The  most  interesting  topic  inside  state-of-the-art  is  prediction  of  events  with  Twitter.  Some 
models have been designed in order to predict elections (Tumasjan et al., 2010) or market stock 
(Bollen et al., 2011). The focus can be positiveness and negativity although there are models 
based on other sentiments like calm, alert, or happiness. Those dimensions can give you models 
more well suited to predict. Twitter has emerged as the best source of information for this kind of 
tasks since most of its content is public and it is used by more than 500 million people. 

In the area of prediction models we have many studies related with sentiment analysis on Twitter.  
(Tumasjan  et  al.,  2010)  worked  with  tweets  about  the  last  german  election  in  2010.  The 
methodology taken is based in 104.003 tweets taken the month before the election. They choose 
tweets  mentioning  parties  and  political  leaders  of  those  parties.  Using  Linguistic  Inquiry 
(LIWC2007) they got the degree of each tweet belonging to empirically defined psychological 
and  structural  categories.  The  categories  are:  future  orientation,  past  orientation,  positive 
emotions,  negative  emotions,  sadness,  anxiety,  anger,  tentativeness,  certainty,  work, 
achievement, and money.

This information was used to compute the similarities between political leaders (figure 3.3). As 
we can see in the results the leader of liberal party Westerwelle is the one that has more polarized 
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results (positive and negative opinions):

Figure 3.3. Profile of leading candidates

As a prediction of the election result they used the mention count method with a Mean Absolute 
Error (MAE) of 1.65% with respect the final result. The variation between the share on twitter 
and the final result can gives us an idea if a party has a positive or negative sentiments on twitter  
i.e. Grüne was able to get 11.4% with only a share of 8.0%, while SPD loses almost 2.2%. As a  
conclusion,  number  of  tweets  mentioning  a  political  party  can  be  considered  a  plausible 
reflection of the vote share. But the study does not go beyond this fact and does not analyze why 
some parties had a positive error and others a negative error.

(O’Connor et al., 2010) did a very interesting approach trying to correlate polls with tweets in 
two different  topics:  economic confidence and US political  elections in 2008. For economic 
confidence  they chose  the  following polls:  Consumer  Confidence  Index from the  Consumer 
Board,  the  Index  of  Consumer  Sentiment  (ICS)  and  the  Gallup  Organization’s  “Economic 
Confidence” index. For the election they chose Gallup’s daily tracking poll for the presidential 
job approval and some data from Pollster.com.

Sentiment  scores  were  calculated with  a  very  basic  technique:  Xt  =  count(positive  words ^ 
topic) / count(negative words ^ topic). The distinction between positive words from negative 
words is done through OpinionFinder dictionary. Some mistakes had to be considered to refine 
results, for instance the word ‘will’ was counted as weak positive and it messed up some scores. 
They had to revise manually some parts of the dictionary to have more realistic scores. Although 
at the end the system had some polarity errors, the aggregated text sentiment obtained was very 
similar to the real polls except that the information obtained in Twitter was more real-time that 
the  information  published  in  polls.  Also,  information  obtained  from  Twitter  needed  some 
smoothing since in day-to-day sentiment is much more volatile than polls.

Figure 3.4. Correlation between Twitter and polls

A very interesting framework to predict changes in stock market is (Bollen et al., 2011). For that, 
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they used around 10 millions of tweets for 6 months and they took tweets with phrases like “i 
feel”,“i am feeling”,“i’m feeling”,“i dont feel”, “I’m”, “Im”,“I am”, and “makes me”. The idea 
they wanted to test if there was some correlation between the mood of people and the variations 
in  stock  market.  Once they  had  this  data,  they  applied  two  processes:  1/  OpinionFinder  to 
calculate the degree of positiveness and negativeness. 2/ GPOMS which measures variations in 6 
different sentiments: Calm, Alert, Sure, Vital, Kind and Happy. To find those correlations they 
used Granger causality analysis. That makes the assumption that if a variable X causes Y then 
changes in X will systematically occur before changes in Y. The accuracy of the model was 
around 87%.

The first test realized was with the USA election of 2008:

Figure 3.5. Comparison between GPOMS sentiments and OpinionFinder

As we can see in figure 3.5 each sentiment has some correlations with the positive/negative score 
obtained through OpinionFinder. We can see how calm has a deep fall in the day before the  
election. Or some happiness peaks for Thanksgiving day.

The second test was done comparing the data obtained through OpinionFinder and GPOMS to 
try to find correlations between market stock and the different emotions. They discovered that 
calm is the best indicator:
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Figure 3.6. Calm scores vs. stock market

As we can see in figure 3.6 most of the peaks and the falls in the stock market are correlated with 
calm score except a couple of peaks that correspond to announcements of federal reservation 
which means that unexpected news has an effect in the economy that cannot be predicted on this 
model.

3.4 Cross-domain models

(Pan et al., 2010) developed a model in the area of cross-domain sentiment classification. For 
that, they used a bipartite graph, so domain-independent words are assigned to left part of a  
graph and domain-dependent words are assigned to right part of a graph as we can see in figure 
3.7. This dependence or independence can be found by measuring the number of times that a 
word appears  in  different  domains.  If  it  appears  in  many domains it  is  independent,  if  only 
appears associated with texts of one domain is dependent.

Figure 3.7. Bipartite Graph

As we can see in figure 3.7 this kind of graph already creates some clusters such as (blurry, 
boring) or (sharp, hooked). Each of this clusters represents a domain. Furthermore, by using the 
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co-occurrence matrix we can guess the polarity of certain words so if “exciting” is used with 
“hooked” we can derive that “hooked” must be positive in the domain of movies, while using 
“never buy” with “blurry” should be a negative indicator in the domain of appliances.

Table 3.8. Bipartite-graph co-occurrence matrix

By applying spectral clustering techniques (i.e. comparing eigenvectors) we can calculate the 
similarity between a new opinion and a domain opinion and estimate better its polarity.

In the last WASSA 2012, we saw Opinum (Bonev et al., 2012). An approach based in statistics. 
In this work, they captured n-grams to detect common text structures that can be counted as 
positive or negative.  The theory behind this paper is that anyone that knows a language can 
detect if a opinion is positive or negative independently of the subject domain. This means that is 
possible to develop a domain-independent polarity detector by not introducing domain words in 
the training data.  For that,  they replaced entities  such as names of banks,  organizations and 
people by wildcards to focus on domain-independent words. They saw also, that unigrams and 
bigrams were not enough for sentiment analysis so they wanted to capture phrases like “an offer 
you  can’t  refuse”  or  “the  best  way  to  lose  your  money”  (5-grams).  The  model  is  purely 
probabilistic  so  for  a  given  text  T with  N  sentences  they  calculate  the  probability  of  each 
sentence s to pertain to positive Mp, and the probability of each sentence s to pertain to the  
negative Mn. At the end, they subtract sums in T(P(s|Mp)) - sums in T(P(s|Mn)) and depending if 
this number is close to 1, 0 or -1 the system decides if a text T is positive, neutral or negative.

3.5 Edge cases and ambiguity

When discussing about sentiment analysis is very usual when someone asks what we can do with 
opinions that look positive but they are not. Sometimes is not enough by looking for presence of 
words  because  sometimes  a  negative  opinion can  be  expressed  without  negative  words  and 
viceversa. For instance: “If you are reading this because it is your darling fragrance, please wear 
it at home exclusively, and tape the windows shut.” For understanding that this is a negative 
opinion you have to relate the concept of windows shut with fragance, but without this context it 
would  be  impossible  to  mark  this  opinion  as  negative.  This  context-sensivity  and  domain-
dependence is one of the main challenges in sentiment analysis. You have to be also careful with 
dependency and order of sentences for instance an opinion like: “I loved this movie when I was  
little, now I hate it.” where the second sentence somehow erases the positivity of the first.

Irony is a specific case difficult to classify. (Reyes and Rosso, 2011) did a very interesting study 
on how to detect irony reviews on amazon shop comments section. All the idea about this study 
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became  from  a  viral  campaign  about  a  T-shirt  called  “The  Mountain  Three  Wolf  Moon” 
http://amzn.to/H4sbGc that  basically  was  getting  lots  of  5  stars  reviews  with  very  ironic, 
sarcastic or even satiric descriptions. Some examples might be: “Unfortunately I already had this 
exact picture tattooed on my chest, but this shirt is very useful in colder weather.” or “Pros: Fits  
my girthy frame, has wolves on it, attracts women. Cons: Only 3 wolves (could probably use a 
few more on the 'guns'), cannot see wolves when sitting with arms crossed, wolves would have 
been better  if  they glowed in the dark.” For those cases they designed a classifier  for irony 
detection.  They  based  its  classification  in  N-grams,  POS-n-grams,  funny  profiling  (with  a 
dictionary taken from WordNet  to  detect  funny words),  positive/negative  profiling,  affective 
profiling (since affective words are very common in ironic and satiric texts), and pleasantness 
profiling (that calculates the probability of having a context favorable and unfavorable for irony).

Figure 3.9. Three wolf T-shirt

3.6 Theoretical aspects

3.6.1 The Art of feature selection

The use of dictionaries can give advantages to our sentiment analysis systems. It has no sense 
starting from 0 when you can access to very good dictionaries to fetch information from. Even 
starting  from  WordNet  seems  pointless  since  we  can  use  Sentiwordnet.  Furthermore, 
Sentiwordnet provides the different meanings for each word and a little gloss that can help you 
with  disambiguations.  The  idea  of  graph  sentiment  propagation  between  synsets  is  very 
powerful. This provides methods to modify the scores assigned to each word to adapt better to 
each domain. The basic idea behind those algorithms is modifying word scores until convergence  
is reached. In our case this convergence can be considered reached when accuracy results do not 
improve anymore. Also is very important the apparition of dictionaries like Sentistrength. The 
degree of strongness is a very important factor in any opinion. How do you say things marks also 
the weight of those opinions, so if you detect than in a text there are 5 or 6 opinions about object 
features how do you choose the most important one? Probably sentiment strength is a good way 
to do this election. Sentiwordnet also classifies with a certain degree of positivity and negativity 
so choosing values near to 1 is a good policy. But sometimes, this enthusiasm or strongness is  
encoded in context and not in specific words. And this is a lack that dictionaries cannot capture.

Sentiment classification is not an ordinary text classification problem. Here we need to work 
with more complex features to get acceptable accuracy ratios. A system with accuracy lower or 
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equal to 80% means that the system is incorrect 1 of each 5 times. But anyway, still you can get  
very  acceptable accuracy  ratios  only  with  N-grams.  We have to  remember  that  most  of  the 
subjectivity is hidden in words combinations such as "I don't like", "I like", "beautiful", "sad",  
etc… Also, converting words to its grammatical representation is helpful. It is demonstrated that 
the presence of adjectives or certain past tenses are indicators of subjectivity. The data inside 
dictionaries like Sentiwordnet can also be converted into features. A dictionary can give you the 
negative/positive orientation of a word which means that you can distinguish between objectivity 
and subjectivity. In state-of-the-art solutions is usual the utilization of wildcards to not include in 
classifiers domain specific words such as names. We do not want to end up with a model where 
the name of a bank is inherently related with negativity because we are interested in capturing 
the  words  that  are  surrounding  this  bank.  This  is  an  important  step  through  cross-domain 
sentiment classification models and the ability to detect sentiments in any text.

A social network or a website can provide other language independent features for sentiment 
classification. For instance, in a traveling site a positive opinion given by someone who travels a 
lot should count more than an opinion of someone who only travelled once. And probably there 
are other factors, that can be used for this boosting. A comment done by someone that has a 
strong affinity with the author will be more precise that an opinion expressed by someone with  
no affinity at all. When there is no affinity the prejudices appear and you can get some noisy 
associations that had nothing to do with reality.

3.6.2 Training and classifying data

Once we have decided the set features that we want to use we have to decide how to train our  
data and choose a classifier. There are several techniques to train a sentiment classifier. In text 
categorization  problems  it  is  important  to  choose  between  supervised  or  unsupervised 
approaches. Also, if you have a small set of labeled data you can create a bigger input dataset by 
doing some tricks. For instance, if a phrase has a greater tendency to co-occur within certain 
context windows with the word “poor” or with the word “excellent” this phrase could be added 
to a positive dataset. Bootstrapping is another unsupervised approach that is useful. The idea is to  
use the output  of  an available  initial  classifier  to  create  labeled data,  to  which a supervised 
learning algorithm may be  applied.  In  order  to  create  a  training  set  from Twitter  it  is  very 
common the strategy of selecting tweets with different emoticons: Happy emoticons: “:-)”, “:)”, 
“=)”, “:D” versus sad emoticons: “:-(”, “:(”, “=(”, “;(” etc. From this starting point you have a  
very good separation about tweets potentially negative and potentially positive so you can tag 
manually from there to erase edge cases and create an initial dataset.

Once we have training data we can use some of the machine learning algorithms available to  
build  a  model  able  to  perform  successful  classifications.  Naive  Bayes  usually  works  good 
enough although other approaches more advanced such as Support Vector Machines have better 
accuracy results. We have to consider how much time the classifier will spend in building the 
model and realizing the individual categorizations. Sometimes it could be good to sacrifice 1 or 2 
points of accuracy in exchange of some performance.  If we do not want to rely on machine 
learning,  other  classification  methods  are  possible.  Pointwise  Mutual  Information  or  term 
frequency models can guess if a phrase or a text is positive or negative by using big quantities of 
data (such as the World Wide Web) to measure the co-occurrences ratios.
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3.6.3 The power of subjectivity summarizations

As we discussed, subjectivity summarization is a task more valuable than direct classification.  
The ability to present a summary with the main opinions about a brand or a product is what user 
demands. User will not be happy just reading: “BRAND_A has 80% of positive opinions”. An 
user wants to know more, he wants to know what are the main reasons behind this 80%. Is it the  
price? Is it the quality? How many opinions were used to compute this percentage?

From the perspective of the brand all  is  different.  The brand wants to analyze thousands of 
comments on different social networks to do some marketing buzz, this means detecting the main 
concerns of users to react fast. Where are my weaknesses? Why this new product is not working? 
Is my new product too expensive?

In this sense, subjectivity summarization depends on the use case. A use case focused on the 
brand is different from a use case focused in the user. We have several techniques to solve this 
problems. To start is very important to detect the sentiment strength inside a text to be able to 
detect the most strong opinion in a text. If we want to present a summary about an Iphone and we 
have to select among several opinions, it  will be important to have a score assigned to each 
opinion to choose the opinion with highest score. When aggregating several opinions we should 
choose those opinions that  are more repeated and have higher strongness. And also consider 
other facts such as authority of the opinion holder or freshness. 

As we have seen in Minimum Cuts algorithm (Pang and Lee, 2004) the idea of joined probability 
of being part of a class is a concept very useful. If we want to capture the negative opinions 
inside a text (and not the positive) we can find the combination of sentences that have more 
probability to pertain to a class. But how do we transform those selected phrases considered 
negative  or  positive  in  features?  This  is  a  very important  step  in  summarization  that  is  not 
covered in literature. Because a phrase such as “This iphone is expensive” is referring to the 
feature price and there is not a direct relation unless a human marks this relation specifically.

3.6.4 Is it possible to predict events with sentiment analysis?

We have analyzed in chapter how some researches have been working in prediction through 
Twitter. This is a very interesting field of research for obvious reasons. The ability to predict the 
future is an opportunity to anticipate change and be more competitive. Stock markets or election 
processes are complex and sometimes a little interaction done by a big media can be influential  
enough to change a sign. As we have seen, to make predictions is important to focus sentiments a 
little bit more. It is not enough to say that an opinion is positive or negative, we have to connect  
each opinion with a concept such as calm, happiness or anger. 

Trying to respond to the original question: Is it possible to predict events with Twitter? I would 
say no. Is possible to approximate a prediction, but there are external influences that are out of 
control. Opinions are a reflect of facts and is impossible to capture certain facts by following 
rumours and opinions. For instance, a fact like a earthquake will not be reflected in rumours and 
is very influential for sentiment. Another fact like a monetary intervention can be reflected in 
some rumours by specialists in the field. But the desire of that happening does not make that real 
(at least in the short term). So this is an example of a fact with a positive impact in economy that  
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cannot be exactly predicted. What it is possible is measure the overall sentiment of people about 
a piece of news, a concept and analyze how this is influential in real indicators.

3.7 Topics not covered in state-of-the-art

In this section we include a list of topics that are not considered in most of the papers in the 
research area. Those topics could be considered as research opportunities for us or for future 
researchers since nobody has came out with a good solution for that. In the discussion section we 
will take some of this ideas to develop our proposal.

3.7.1 Knowledge dictionaries

Some projects like Sentiwordnet provide a negative and a positive score for each word in a 
dictionary. It would be interesting to calculate something like the degree of affinity between 
concepts. For instance, which is the degree of proximity between the word “happiness” and the 
word  “calm”?  By  having  this  ability  of  keeping  crossed  scores  we  could  find  correlations 
between real indicators and those scores to find those words or concepts that define better those 
real indicators.

3.7.2 Structured N-grams

Semantic technologies are very interesting to perform classifications. In this sense, solving this 
problems with N-grams seems a very reductionistic approach. Usually consecutive words are 
considered as the base  of the language.  “I  like”,  “I  don’t  like” are  indicators of  positive  or 
negative opinion, but sometimes there are hidden conceptual relations that are stronger than that.  
For instance a predicate-subject relation could be an indicator encoded in two words NAME-
VERB. Even we could work with more complex graphs such as NAME-VERB-OBJECT. Those 
conceptual relations do not need to be consecutive, sometimes we can exclude some details that 
are not important for opinion like a nested phrase “This house, located in 17h street, has 120 
square feet.”. It is also possible to introduce directed graphs to make emphasis in the direction of 
the meaning. “Star wars is boring” could be converted in a graph where the root is “Star Wars”  
and we have one edge directed to the root “boring”.

Those structured N-grams could be created with probabilistic models. Analyzing the content of a 
phrase we can try to create correlations between the different members in a phrase to guess 
which combinations are more meaningful. Do we have to choose a verb and a noun? Do we have 
to choose a noun and an adjective? Is it better to choose only an adjective? By working with a 
training  dataset  we  could  find  heuristics  to  perfectionate  accuracy  results.  The  weight  of 
dictionaries and semantics in this kind of heuristics can be crucial.  So maybe a combination 
verb-noun between two specific topics can be more important than other.

3.7.3 Sentiment as a problem, desementilaization as a solution

Humans  are  passionate  about  what  they  do.  Is  impossible  to  not  reflect  some sentiment  or 
attitude  when  you  write  about  something.  If  you  are  writing  an  article  about  the  israeli-
palestinian problem you probably will pick one of both sides and reflect that in your article. But 
sometimes, we need to know the truth, we need to know the reasons and not the statements given 
by someone.  In  this  information age  it  would as  important  as  analyzing subjectivity  having 
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technologies  able  to  take  a  text  and  do  distinctions  about  what  is  subjectivity  and  what  is 
objectivity. This technologies could be helpful to calculate the degree of impartiality of a big 
media towards one issue. We could know what is the position of “New York Times” towards 
“Gun control”. We could know if this issue is addressed with impartiality or not and if it is not 
addressed  with  impartiality  which  is  both  sides  has  been  taken.  This  analysis  is  especially 
important with big medias supposed to be impartial such as public televisions.

3.7.4 Buzz detection

This is  a topic that is  not very covered in literature.  In sentiment  subjectivity we have seen 
techniques  to  detect  the  key phrases  in  a  text  towards  one  sentiment.  But  we haven’t  seen 
techniques to convert this “key phrases” in “key topics”. The ability to convert phrases in topics 
is a key space in sentiment analysis. In this sense the techniques around buzz detection could be 
very helpful once we have selected those key phrases.

3.7.5 External factors on comments

When analyzing comments on a topic it is very important to analyze other factors that are not 
linguistic. For instance, the degree of affinity between the author and the person who did the 
comment. Usually the replies are done to open a discussion or because you do not agree with the  
author about some statement. Other kind of replies, could be more constructive between both 
members have certain degree of affinity which means that the discussion will be more about the 
details of a statement than not an amendment to all. In twitter this analysis is very obvious when 
people are discussing about ideological issues.

In this group of external factors on twitter we have other things such as external links or images. 
Sometimes a reply to a tweet could be an image. How do we take this information inside this 
image and we incorporate that in the language? Is it enough with the title of the image? Or do we 
have to analyze the pixels inside this image? This analysis is equally important when someone 
includes a link in a reply. Which is this link talking about? Is it objective or subjective? Which is  
the postulate that it defends and how it relates with the comment done. Twitter has reached a 
point where is not enough analyzing language. We have to analyze images, external links and 
video to provide a proper sentiment analysis.

3.7.6 Big data can help?

We have seen some algorithms that are using the biggest dataset you can use: The World Wide 
Web. This was the case of Pointwise Mutual information. But those algorithms are limited to the 
number of times that you can query Google without being banned. To work correctly you should 
have a copy of the WWW in your datacenter and be able to query without restrictions. Since this 
is difficult to achieve except for Google or Yahoo, another possibility is develop a crawler that 
saves the number of hits of each word and its correlations in a big sequential  file.  This big  
sequential file could be queried from outside with technologies such as Hadoop that instead of 
doing random accesses to disk, treats this information sequentially.
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4. Proposal

After reviewing all the material we decided to test an approach with dictionaries. This seemed 
the approach more realistic to do. Better than using machine learning over N-grams, syntax or 
POS-tagging since the information in tweets is too short  and usually does not follow strong 
grammatical rules. With dictionaries we can create a closed system with a finite number of N-
grams. Furthermore, a dictionary seemed a necessary starting point for other advanced tasks such 
as summarization or data analysis. 

We tested how well a predefined dictionary was able to classify documents but after first tests we 
saw  that  Sentiwordnet  accuracy  results  weren’t  very  good.  For  that,  we  designed  a  semi-
supervised approach with a little interface where we can annotate tweets. This annotations can be 
reused to improve the dictionary in next iterations by adding new words to it. Once we had this 
supervised dictionary able to assign scores correctly to a given tweet, we developed the second 
part of the project: detect key aspects on a tweet. As important as knowing that an opinion is 
positive or negative is knowing the reason why. A model based only in sentiment words can be 
very poor because a negative word can be dependent on context. To avoid that, we captured the 
relationships between sentiment words and aspect words in each tweet. So if a user tweets “The  
staff of this airline is awful” we create a relationship between “staff” and “awful”. So in the 
annotation we record that the user says that something is “awful” because its “staff”. 

All this relationships are included in our annotation system. After annotating a big amount of 
tweets capturing all those sentiment words and aspect words we can experiment with machine 
learning and try to use this data to make predictions on new data. So the main challenge on this 
part of the work is how do we represent this text information to create models as accurate as 
possible.

To sum up this ideas, we defined this 3 hypothesis:

HYPOTHESIS (H1): We can create groups of N-grams that influence specifically to one aspect 
in a negative or a positive orientation. This is what we call sentigrams.

The idea of sentigrams is one step ahead from the reductionistic problem of positive or negative. 
In sentigrams, we can see the reasons why a user thinks that something is good or bad and also 
the key sentiment words that make this difference.

HYPOTHESIS (H2): By using  incremental learning the system improves in each iteration. 
Increasing precision.

This means that the system is designed as a semi-supervised intelligent system. That improves in 
each iteration as we get more training data. The use of a dictionary that uses the information on 
annotations to process new words makes the system able to distinguish new cases and calculate 
better punctuations.

HYPOTHESIS (H3): After certain number of iterations is reached we can assign a sentigrams 
to a tweet automatically w/o manual intervention.
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As we get more and more interactive annotations for one specific domain we are able to perform 
more complex automatic classifications and not only say that an opinion is “good or bad”. If we 
guess sentigrams correctly, we can say “why an opinion is good or bad” and perform a more 
detailed analysis on groups of tweets.

4.1 Sentigrams
The annotations used in this project include if the tweet is positive or negative (independently of 
the score given by the dictionary), the sentiment words that make this tweet positive or negative 
(marked in  red,  figure  4.1),  and aspects  of  this  opinions (marked in  black,  figure  4.1).  The 
sentiment words are those words that contain sentiment and that have a positive or a negative 
score. The aspects are “the reason why” a user is complaining or does agree about something. 
This combination of information is what we call sentigram. A sentigram is the agreagation of 
several words and it represents a structured N-gram able to capture a set of words (sentiment  
words and aspects) with enough weight to determine if a tweet is positive or negative

Figure 4.1. Manually annotated tweets

In the examples seen in figure 4.1 we can see how “always on time” is an N-gram detected a 
sentiment word that basically refers to “Ryanair and Easyjet”. So in this case the user is not 
reviewing about a specific aspect about the airline and is giving a general opinion.

In the second example in figure 4.1 we see two negative sentigrams (“ryanair” => “nightmare”) 
and (“baggage” => “pay”,  “extra”,  “ridiculous”).  Very interesting to see how in this  context 
paying for baggage is always bad when maybe in other context paying can be good. The idea on 
this example is that we have two sentigrams that express different opinions first in general about 
the airline “ryanair” and secondly about the aspect “baggage”. The sum of those two opinions 
make this message clearly negative.

4.2 Incremental learning

When we introduce the idea of semi-supervised learning the user can adapt the system to a 
specific domain and specialize the system to a use-case. For instance, an airline could use this  
system to detect complaints from clients and react fast to negative opinions. It could also detect  
when good opinions are done and analyze those users that are happy with the airline and increase 
resources on that area that is working well. When we design a non-supervised system or a cross-
domain solution we can lose this attention to detail that a domain-specific model can reach.

In our use-case what we do is using all the words marked as sentiment words (marked in red) to 
add new entries to the dictionary. This dictionary uses random-walk algorithm to adapt the scores 
of each word to maximize the number of matches. This means that depending on the domain the 
scores of the words could end differently. The idea of random-walk consists in doing a change in 
one random word of the dictionary. If this change increases the number of matches, we take it. If 
not we rollback and we try a different change. After several iterations we reach a point where any  
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change can’t increase our number of matches. This is the point where we reach convergence and 
the dictionary is ready to work.

4.3 Automatization

The  process  of  supervision  is  interesting  to  create  better  dictionaries  but  we  have  other 
technologies that can take advantage of this data such as machine learning. With enough training 
data  we  can  reach  a  point  where  the  system  can  detect  sentigrams  on  a  specific  domain 
automatically. When our application reaches an adequate number of iterations. We are able to 
create a model with training data able to guess sentigrams. For that task, we use Weka. 

One of the main problems is how we introduce this annotation data in Weka because a tweet.  
This is a problem quite complex from a technological point of view. Because we potentially have 
an infinite number of states. A tweet is composed by 140 characters that usually contain from 1 
to 32 words. From those 1 to 32 words we have to select which of them are aspects, which of 
them are sentiment words and which of them are not relevant. How many possible combinations 
we have? A simple problem with 3 words has already 33 possible combinations. Imagine this 
same problem with 32 words. 

To solve this problem we use a divide-and-conquer strategy. This means that for each tweet we 
create N partial observations. One observation for each position in the tweet. This idea is inspired 
by Viterbi algorithm that uses information in neighboring states to predict next states. So if a 
tweet contains 4 words, we need to create 4 observations (first in position 0, second in position 1,  
third in position 2 and fourth in position 3). Each observation has information about neighboring 
words and the output that we obtain according with this information.

(i.e. "easyjet is a joke")
0, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1
1, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
2, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
3, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 2
4, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
5, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
6, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
7, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
8, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
9, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0

...
32, 801829636, -545403680, 1561023766, 2119008529, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0

Figure 4.2. Example of Weka @DATA input for a specific tweet

To represent words we use a unique integer. That can be calculated using hashCode() of a string. 
Is not an exact unique code because we do not cover all the possible combinations of strings, but  
it will work in most cases.

The possible class outcomes are {0,1,2} so we are not working strictly in a binary problem. But 
at least we have reduced the dimensionality of the problem to 3. {0} represents that the word is 
not relevant, {1} represents an aspect and {2} represents a sentiment word.
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4.4 Implementation

Figure 4.3. Design of our proposal

In the design shown in figure 4.3 we see the technical structure of this project. Basically we have 
a  list  of  tweets  obtained  from  the  Twitter  Api  and  a  dictionary  (initially  taken  from 
Sentiwordnet). From this point we want to know which tweets have words from this dictionary 
and which don’t and calculate a tweet score that will be the sum of the scores of each of those 
words. After this aggregation we have one tweet score for each tweet and we can supervise the 
results in a user interface. In this interface we will decide which tweets were correctly classified 
and  which  don’t  aggregating  new words  to  our  dictionary  if  needed.  This  is  what  we  call 
incremental  learning.  New information is  integrated in the system to get  more precise tweet 
scores. Now we will review briefly the different parts of the project.

4.4.1 Twitter Api

This part of the code realizes queries to the twitter search api for a list of topics specified by the 
user. Usually the user can compare 2 or more topics in order to see differences between them (for 
instance comparing two political adversaries or two competitor companies). The code performs 
searches by text to find all tweets in the last week mentioning a determined word. As it searches, 
the code creates a file with the list of tweets in JSON format (separated by end of lines). This  
line-by-line format can be parsed easily by Hadoop.

4.4.2 Sentiwordnet/Dictionary

Originally we take information from Sentiwordnet dictionary. This is a dictionary available at 
http://sentiwordnet.isti.cnr.it/ and is structured in the following way:

a 00009346 0 0.625 abstinent#1 abstentious#1 self-restraining; not indulging an appetite 
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especially for food or drink; "not totally abstinent but abstemious"
a 00009618 0.5 0.25 spartan#4 austere#3 ascetical#2 ascetic#2 practicing  great  self-
denial; "Be systematically ascetic...do...something for no other  reason than that  you would rather not do it"- 
William James; "a desert nomad's austere life"; "a spartan diet"; "a spartan existence"
a 00009978 0 0 gluttonous#1 given to excess in consumption of especially food 
or drink; "over-fed women and their gluttonous husbands"; "a gluttonous debauch"; "a gluttonous appetite for 
food and praise and pleasure"
a 00010385 0 0 crapulous#2 given to gross intemperance in eating or drinking; 
"a crapulous old reprobate"
a 00010537 0 0.5 crapulous#1 crapulent#1 suffering  from  excessive  eating  or 
drinking; "crapulent sleep"; "a crapulous stomach"

Figure 4.4. Example of Sentiwordnet

The dictionary is also using a line-by-line text format where each line represents a meaning. This 
meaning can be represented by several words (i.e. crapulous#1 crapulent#1). The hashtag at the 
end is  used  for  hyperonymic  cases.  Words written as  the  same but  with  different  meanings 
depending of the context.

The Sentiword line also includes a positive score and a negative score that is basically what we 
have to use in our system to calculate if a tweet is positive or negative. Checking if a tweet has 
words  on  this  dictionary  and  summing all  those  scores.  Finally  it  includes  a  little  gloss  to 
understand the differences and a numeric id.

4.4.3 Hadoop Processor

Before starting to write code we had to decide which tool to use. We needed a something able to 
process big quantities of data without wasting too much memory. Saving a list with millions of 
tweets could not be scalable at certain point because would not fit in memory and this would 
force our system to perform random reads on disk. Hadoop seemed the best option to avoid that. 

Hadoop uses MapReduce which is a programming model used by Google to support parallel 
computation in commodity hardware. The name of MapReduce is used because the programming 
model is divided in two main macros called Map and Reduce. In the Map phase we process a big 
file from several threads at same time. Each thread has a different starting point in order to cover 
all the file with all threads (some parts are processed twice or three times to have redundancy 
between machines). Each one of this threads will read the information provided in the subparts of 
this file to emit information to the Reduce step. The Map step decides how the information is  
grouped in the reduce step. And the reduce step receives this parts of information and performs 
group operations to create new data.

A typical example to understand MapReduce is the count-word example. So each one of this 
threads will read a part of a text. The Map step would emit pairs such as (word, 1) and the reduce 
step would collect all this (word,1) pairs and count them to emit (word, n) groups.

In this use case we have two sources of information. In one side, we have tweets and in the other 
side we have Sentiwordnet data. So we need to design a MapReduce process able to process two 
types of inputs: tweets and sentiword entries. The process of mapping will be emitting each N-
gram inside a tweet and each word in the dictionary. In the reduce step we receive aggregations 
of N-grams with information associated to its tweets and its sentiwords entries. In this reduce 
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step, we will be interested in keeping N-grams that are appearing in Sentiwordnet to create a file 
with all the N-grams with relevant information.

After  we  have  this  file,  we  perform  a  second  MapReduce  process  which  consists  in 
reconstructing the information about tweets through the sentiword information. So we emit pairs 
such as (tweet, sentiword) and in the reduce step we collect groups such as (tweet [sentiword 1, 
sentiword2,  …,  sentiwordN]).  After  this  process  we  can  have  a  list  of  all  tweets  with  the 
information about all the sentiwords that were defined in the dictionary. For this sentiwords we 
will have also associated information like positive score and negative score.

With all this data grouped in one point we can calculate now the tweet score associated to each 
tweet and we can determine if a tweet is positive or negative.

4.4.4 Rails application (Web/Client side)

Rails is the part of the code responsible of the operations with the user. Here we have a set of 
interfaces where we annotate  tweets manually to improve the system (iteration by iteration). 
From here  we can also  design  interfaces with  the data  of  the  different  tweets  and calculate 
statistics.

4.4.5 Annotations

All the annotations done in the interface are used in next of iterations of the system to improve 
the dictionary or to create better Weka Models.

Figure 4.5. Manually annotated tweets

The annotation consists in (+/-) indication (given by the emoticons). This is independent of the 
score given by the dictionary. We can have a tweet that is wrong in our dictionary and we can 
correct it from this interface. The second part of the annotation are the sentiment words (marked 
in red) that indicate those words that should be included in the dictionary on next iterations. And 
the third part include the aspects (marked in black) so those words which are the object of the 
user opinion.

In our code, the annotation can be converted to a series of {0,1,2} where 0 indicates that the 
word has no information, 1 indicates an aspect, and 2 indicates a sentiment word. We should give 
an output for each word position in a tweet.

4.4.6 Weka Module

The Weka Module is designed to perform sentigram predictions on new tweets. This module is 
trained with the information obtained from annotations. By adding sentigrams to new tweets we 
are be able to create interfaces analyzing one specific topic on Twitter and aggregate groups of 
sentigrams to show a summary of this topic.
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5. Experiments

5.1 Dataset

For our experiments we took data through the Twitter Api from different airlines. We basically 
took  data  from  the  top  10  airlines  in  Europe 
http://en.wikipedia.org/wiki/List_of_largest_airlines_in_Europe. Since this api does not allow to 
query for messages older than 1 week, we have taken data from the first week of June 2013 
aprox. 12.195 tweets. We used the filter of language to select only messages in english, but some 
of them are in other languages because this filter is not detecting all cases. The dataset is in 
JSON separated by end of lines. So any process can read from here line by line, parse the JSON 
and then it will get information about a specific tweet.

One characteristic of this domain is that most of messages are negative. So people is not usually  
happy  with  airlines  because  baggage  policies,  lack  of  space  in  seats  or  long  reclamation 
processes. This means that detecting positivity in this domain is a task totally different that it 
could  be  in  any  other  domain.  Only  a  few  selected  words  indicate  positivity  and  they  are 
correlated with very specific aspects.

In order to test results we have annotated manually 557 tweets of those 12.195. This is our gold 
standard to test accuracy in our experiments. In each one of those tweets we have indicated if the 
tweet is positive or negative, the different aspects, and the sentiment words. This information is 
used to test correctness in the tweet scores given by the dictionary and also to test our machine 
learning solutions that have to guess sentigrams.

5.2 Experiments with Sentiwordnet

The first version of our software was working exclusively with Sentiwordnet. So the concept of 
incremental learning was not yet defined. When we saw that the precision was not very far away 
from 50% we decided to perform some modifications to increase accuracy.

The  first  test  done  with  the  original  dictionary  has  given  us  an  accuracy  of  46.50%.  This 
basically means, that scores given by the original dictionary are not very helpful for the airlines 
domain. We know that this is a binary problem with two possible answers (positive or negative). 
If the accuracy is around 50% this implies that the accuracy is like flipping a coin or doing a 
random raffle. Anyway, in the original scores we start to see some tendencies in tweet scores for 
instance in words with strong positive or negative meaning.

In order to improve accuracy ratios, we tried some changes in code that we will review in this 
chapter.

5.2.1 Co-occurrence scores

This idea was based in Pointwise Mutual Information idea.  Basically we wanted to assign a 
punctuation to words already marked as negative in the original dictionary. If a negative or a 
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positive word was found inside a tweet (because one of those words was found in Sentiwordnet) 
we divide its score between all the neighboring words to emit a co-occurrence score. With this 
technique, words that co-occur more often with negative words will tend to have a co-occurrence 
score negative. With this second score we can complement the tweet score. 

After some experiments we saw that adding more data the accuracy rate of the co-occurrence 
score was better.  So if  instead of processing 1 week of information we process  2 weeks of 
information the co-occurrence score was more helpful. But anyway, we got better results using 
exclusively sentiwordnet score and ignoring co-occurrence score. This means that this idea of co-
occurrence was noisy at least with our original design.

5.2.2 Negative N-grams

The process of aggregating sentiment words in each tweet need some optimizations to perform 
better. For instance, we need to consider negations on N-grams to avoid assigning positive scores 
when something is negative. For that we simplify tweets that include negations such as “don’t”, 
“isn’t”, “wasn’t” replacing them for the word “not”. Now when a N-gram is preceded by the 
word “not” we emit this N-gram as “NOT N-gram”. In the side of Sentiwordnet we do the same 
we emit all words as “sentiword” and “NOT sentiword”. When a sentiword is emitted as “NOT 
sentiword” we emit as positive_score = 0, and negative_score = -positive_score.

5.2.3 Stemming

Stemming is a technique to reduce a word to its root. There are some stemming algorithms that 
help in information retrieval systems increasing recall. Using this technique if you search for the 
word “languages” you will find results for “language”. This means that the search is performed 
with the root word “languag”. 

In our system we use stemming to group words by stems. This allows to consider together words 
that are plural with singular or present with past. This helps to join word sentiment scores in 
words of the same family that could be sharing positive and negative influence. In experiments 
stemming was a little bit noisy if we apply it alone, but in combination with negative n-grams it 
starts to be effective.

5.2.4 No Disambiguations

In Sentiwordnet the same word can be used for several meanings. Usually if a word has more 
than one meaning is indicated with the hashtag #n. For instance the word “be” can be represented  
as be#1, be#2, be#3 in the dictionary. Each word + hashtag represents one different meaning of a 
word. Consequently, this implies different sentiment scores for each meaning. 

In our use-case we have not done any disambiguation between the different meanings of a word. 
Instead of that, we perform an average of all the positive and negative scores for all meanings. 
So all meanings, punctuate as a unique sentiment word. This would be very bad if we wanted to 
create  a  cross-domain  classification  model,  but  since  we  want  to  train  models  for  specific 
domains it is more difficult to have problems with disambiguations. And in edge cases we hope 
that the scores will tend to be (0,0).
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Method Accuracy
Sentiwordnet 46.50%
Sentiwordnet + Co-occurrence scores 45.32%
Sentiwordnet + Stemming 45.96%
Sentiwordnet + Negative N-grams 47.94%
Sentiwordnet + Stemming + Negative N-grams + Co-occurrence scores 48.56%
Sentiwordnet + Stemming + Negative N-grams 50.98%

Table 5.1. Comparison of accuracy with all variations and the Sentiwordnet original dictionary

5.3 Experiments with Sentiwordnet after random-walk

5.3.1 Random-walk

An accuracy of 51% was not good enough, so at this point we decided to perform some changes 
using random-walk algorithm. This algorithm consists in modifying word scores randomly until  
number of matches increases. For that, we work over a set of annotated data that is our gold 
standard to perform accuracy tests. 

The procedure consists in performing iterations over the dictionary performing random changes. 
Those random changes are only accepted if they increase number of matches. So if a change in 
the word scores decreases number of matches the change is reverted, and we try another change. 
The number iterations depends on the size of the dictionary so a good number of iterations is 
usually 100 times SIZE_DIC to ensure that every word of the dictionary is at least modified 100 
times. This number of iterations ensures convergence in most cases.

Method Iterations Accuracy
Random-walk  +  Stemming  + 
Negative N-grams

SIZE_DIC 64.09%

Random-walk  +  Stemming  + 
Negative N-grams

10*SIZE_DIC 84.56%

Random-walk  +  Stemming  + 
Negative N-grams

100*SIZE_DIC 95.33%

Table 5.2. Comparison of accuracy with all the variations and Sentiwordnet after random-walk

5.3.2 Random-walk with domain words

After  seeing  good  results  with  original  Sentiwordnet  with  random-walk  we  have  tried  to 
incorporate to the dictionary the words that we have included in our annotations (marked in red). 
The idea of this annotations was to incorporate domain sentiment words to the dictionary as 
(pos_score: 0,  neg_score:  0) and make random-walk balance this scores in conjunction with 
original dictionary. Finally the domain words we have used do not make a big difference. This 
could be because the selection we used is not accurate from a linguistic point of view or maybe 
because some noisy situations not considered. If for instance we select the word “on time” as a 
specific  for  domain  airlines  and  we  already  have  in  Sentiwordnet  the  word  “time”  we  are 
duplicating information. So once the scores of word “time” are adjusted, the word “on time” 
remains equal. 

Probably a better linguistic selection of this domain words and some fixing in this ambiguity 
cases  could fix  the  problem. In any case,  the performance between both  solutions  is  nearly 
similar so including our own sentiment words is feasible and does not require much additional 
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computing time.

Method Iterations Accuracy
Random-walk  w/  domain  words + 
Stemming + Negative N-grams

SIZE_DIC 63.02%

Random-walk  w/  domain  words + 
Stemming + Negative N-grams

10*SIZE_DIC 84.91%

Random-walk  w/  domain  words + 
Stemming + Negative N-grams

100*SIZE_DIC 94.08%

Table 5.3. Comparison of accuracy with all the variations and Sentiwordnet after random-walk 
with domain words.

5.4 Experiments on sentigram prediction with Weka

To test the automatic detection of sentigrams we have used the method described in chapter 4.3 
that consists in creating one observation for each word inside a tweet and create one unique 
identificator for each word. Our objective is analyze all the words in a tweet and the position of 
the word we are in to guess if we are in a sentiment word {2}, in an apsect {1} or in a non-
relevant word {0}. With the conjunction of all this guesses (one per word) we can classify all the 
important words on a tweet as a whole. And solve the problem as it were binary when in reality 
is a multi-class problem.

We have tested our solution with three different machine learning methods: Naive Bayes, K-
Nearest Neighbors and Bagging. On the other hand, we have tested three approaches: guessing 
only sentiment words, guessing only aspects and guessing aspects and sentiwords in conjunction 
(which is equivalent to guessing the entire sentigram). The third approach is not as precise as 
approaches 1 and 2, but it will  be able to capture correlations between sentiment words and 
aspects where in the other 2 solutions this distinction cannot be done. In table R we can see 
results:

Method Accuracy
Sentiment words w/ Naive Bayes 84.64%
Sentiment words w/ KNN 92.01%
Sentiment words w/ Bagging 92.07%
Aspects w/ Naive Bayes 88.94%
Aspects w/ KNN 92.98%
Aspects w/ Bagging 93.63%
Sentigrams w/ Naive Bayes 78.96%
Sentigrams w/ KNN 85.21%
Sentigrams w/ Bagging 85.92%

Table 5.4. Comparison of accuracy with several machine learning methods to detect sentigrams.

We can see how classifying sentiment words is a problem where we can reach an accuracy of 
92% while with aspects the problem reaches almost 94%. When we transform the problem in a 
problem with three outputs {0,1,2} the accuracy reaches almost 86%.
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6. Conclusions

6.1 Final remarks

During this thesis work we have seen how sentiment analysis is a mature field of research with 
very  good  ideas  already  implemented.  We  have  done  an  overview  of  some  state-of-the-art 
solutions applied to sentiment classification, subjectivity summarization, or sentiment prediction.

We have demonstrated how solutions like Sentiwordnet are not as easy to extend as we may 
think. The selection of words provided can be adapted to multiple domains using random-walk 
algorithm and adapting internal weights to each use case. But is not trivial to add new words to 
this dictionary. We have to be careful from a linguistic point of view choosing new words for this 
dictionary to not add noise and decrease precision in our system. This basically proves that the 
original selection of verbs, adjectives and nouns in Sentiwordnet is very powerful and adaptable 
to multiple domains.

We have developed the idea of sentigram as extension of N-grams. Using sentigrams instead of 
N-grams  gives  us  a  the  ability  to  detect  relations  between  words  that  are  not  necessarily 
consecutive and not necessarily syntax-related. This kind of solution is very useful for the use 
case of Twitter where opinions are very short and they don’t follow strong syntactic rules since 
the  space  is  limited  to  140  characters.  Another  good  advantage  of  this  approach  is  that 
encapsulates opinion direction and aspects in the same unit of information. This is useful for 
context-dependent words so our machine learning system trained with annotations will try to find  
correlations between aspects and opinion directions before assigning them to a specific group. 
This encapsulation is also helpful for data analytics so we can analyze groups of tweets and 
extract information such as most repeated sentigrams.

The  results  on  sentigram prediction  are  very  good  considering  that  we  do not  provide  any 
grammatical or syntactical information apart from the word order or the position we are in. Also 
we have to consider that we are working with a limited number of annotations. As the system is 
incremental, each iteration will add new annotations to the system and the accuracy ratio will 
grow more. Furthermore with the combination of sentigram annotations, individual annotations 
(aspects  and sentiments),  and the  information provided in  dictionaries  we can minimize  the 
problems given by false positives.

6.2 Research questions

HYPOTHESIS (H1): We can create groups of N-grams that influence specifically to one aspect 
in a negative or a positive orientation. This is what we call sentigrams.

We have demonstrated that this is possible. Analyzing tweets of airlines we have detected groups 
of N-grams non adjacent and non related by syntax that indicate opinion orientation of a tweet 
and its aspect. By using this new unit of information we can analyze an entire twitter topic and 
capture the general opinion of a group of users.

HYPOTHESIS (H2): By using  incremental learning the system improves in each iteration. 
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Increasing precision.

We have applied incremental learning to improve Sentiwordnet dictionary and we have seen that 
this process of adding new words must be done very carefully to avoid noise. In our experiments 
we couldn’t prove that adding new sentiment domain words gives always more precision. This 
could  be  because  the  words  already  selected  in  Sentiwordnet  are  covering  most  opinion 
orientations or because our selection of domain sentiment words was incorrect from a linguistic 
perspective.  In  any case,  this  noise added can be compensated  by doing more random-walk 
iterations to rebalance sentiment scores.

Also, we have applied incremental learning to improve sentigram prediction. In this case, we 
have seen that Weka performs better when it has more annotations to work with. So we assume 
that new iterations in our system will retrieve better results than the results we have obtained in 
our experiments.

HYPOTHESIS (H3): After certain number of iterations is reached we can assign a sentigrams 
to a tweet automatically w/o manual intervention.

The part of the problem that can be considered as nearly solved automatically is detecting if a 
tweet is positive or negative. We have seen how using Sentiwordnet after random-walk we can 
get accuracy ratios near to 95%. Furthermore, we do not need to add new words to the dictionary 
to reach this ratios.

In the case of sentigram prediction, automatic detection is possible but with certain limitations. 
As we get more iterations in our system we process new combinations of sentiment words and 
aspects that can be reused to detect new opinions. But the precision obtained it is still below 90% 
so to  get  automatic  detection of  sentigrams we will  need to  design  a  system that  combines 
information of individual classifiers and joined classifiers to compensate this 10-15% error ratio. 
With this combination the probability of false positives would be lower and we could detect the 
most clear cases in exchange of less information detected. With less amount of information (but 
always correct) we can analyze twitter topics and detect most common sentigrams to perform 
subjectivity summarizations.

6.3 Future work

For future work it will be interesting to focus more on subjectivity summarization and use this 
system to detect sentigrams in trending topics. We should explore then which sentigrams are 
more useful and how to combine them to produce automatic texts. We can exploit ideas such as  
affinity between users or social rank to determine which sentigrams are more essential to build 
this summary. Finally we should test this automated summaries with real users and find which of 
them are more close to reality.

Another line of work is improve the selection of domain words. So it would be interesting to 
focus  our  investigation  in  which  kind  of  linguistic  rules  we  should  follow  to  get  better 
Sentiwordnet accuracy ratios and extend this dictionary for specific domains. Other good idea is 
applying sentigrams to longer texts such as opinion reviews or articles. From more complex texts 
we could incorporate grammatical information to the algorithm and develop a model that could 
be used for shorter texts in the long term.
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